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Abstract—The performance of distributed-memory applica-
tions, many of which are written in MPI, critically depends on
how well the applications can ameliorate the long latency of
data movement by overlapping them with ongoing computations,
thereby minimizing wait time. This paper aims to enable such
overlapping in large MPI applications and presents a framework
that uses an analytical performance model and an optimizing
compiler to systematically enable the optimizations. In particu-
lar, we first generate an analytical performance model of the
application execution flow to automatically identify potential
communication hot spots that may induce long wait time. Next,
for each communication hot spot, we search the execution flow
graph to find surrounding loops that include sufficient local
computation to overlap with the communication. Then, blocking
MPI communications are decoupled into nonblocking operations
when necessary, and their surrounding loops are transformed
to hide the communication latencies behind local computations.
We evaluated our framework using 7 MPI applications from the
NPB NAS benchmark suite. Qur optimizations can attain 3-88 %
speedup over the original implementations.

Index Terms—Computer Applications; Computer perfor-
mance; Parallel machines; Automatic programming

I. INTRODUCTION

As computing platforms migrate to clusters of increas-
ingly larger scale of microprocessors, applications need to
manage the distributed memories of the processors via ex-
plicit message-passing runtimes, for example, MPI, to attain
high performance. The relative latency and bandwidth of the
communication network in relation to the compute capacity
of processors are often hard to predict a priori and may
change dramatically from one system to the next. Even
on supercomputers comprising homogeneous nodes, system
noise is increasing on each node because of aspects such as
power management, deeper memory hierarchies, and sharing
of hardware such as caches and network. The “equal work
means equal time” paradigm is no longer relevant on most
systems, and load imbalance increasingly becomes the com-
mon scenario even on applications that are symmetrically
structured. Consequently, bulk-synchronous communication,
where all processes synchronize frequently, is no longer a
valid option for high-performance MPI applications. Appli-
cation performance is often critically determined by its ability
to flexibly overlap communications with local computations,
thereby minimizing wait time.
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Fig. 1: Optimizing NAS FT by overlapping computation
with communication (Before(i)/After(i) are computations be-
fore/after the MPI communication of the ith loop iteration)

This paper aims to automatically enable the use of non-
blocking latency-hiding techniques to overlap local computa-
tion with remote communication in MPI applications, thereby
enhancing their overall efficiency and performance portability.
To illustrate the optimization, Figure la shows the structure
of the NAS FT benchmark [4], which applies fast Fourier
transform (FFT) to a 3D matrix through a loop that interleaves
the computation of scaling the input matrix with a collective
communication of MPI_Alltoall to exchange data among the
processes. This is then followed by a final transposition of
the resulting matrix. The clear separation of computation
and communication phases makes the algorithm design easy
to implement and maintain. Additionally, the communication
buffers can be reused across different loop iterations, saving
memory. However, the blocking MPI communication requires
that all processes wait while the MPI_Alltoall operation is in
progress. Consequently, unless the application is executed on a
platform with the fastest network connections, its performance
is likely to suffer because of the excessive wait time.

Figure 1b illustrates how the structure in la may be
modified to better overlap computation with communication.
In particular, the MPI_Alltoall operation is decoupled into



two finer-grained operations: a nonblocking MPI_Ialltoall
and a blocking MPI_Wait. Then, the loop is modified so
that Before(i), which multiplies a local matrix with a time-
evolution array and then saves a transpose of the matrix into
a local buffer to be communicated to other processors, and
MPI_Ialltoall(i), which exchanges the local transposes among
different processes, are essentially moved so that they are eval-
uated before MPI_Wait(i-1), which waits for the completion of
MPI communication of the previous iteration, and After(i-1),
which processes the just received remote data (of the ¢ — 1th
iteration) and then prints the result into an output file. By using
two distinct buffers to store the data used in consecutive MPI
communications, the output dependence between After(i-1)
and Before(i)/MPI_Ialltoall(i) can be eliminated, guaranteeing
the correctness of optimization.

MPI_Test operations then are inserted into the local compu-
tation to ensure the progress of the nonblocking communica-
tion.! By overlapping the MPI communication with the local
computation, the transformed code allows the application to
perform well even on systems with slow network connections,
although nonblocking communications generally take longer
than their blocking counterparts do, and more memory may
be needed to hold the data during communication.
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Fig. 2: Optimization workflow.

Figure 2 shows our workflow for systematically enabling
communication-computation overlapping (CCO) in MPI appli-
cations to enhance their performance portability. The workflow
contains three key components: (1) the performance modeling
component, which analyzes the runtime statistics of an MPI
application to extract a Bayesian execution tree [16] repre-
sentation of its execution flow, including the frequencies of
various runtime code paths and their performance character-
istics such as computation intensities, working set sizes, and

! Although MPI communications do not need full usage of the CPUs, they
need some CPU time, e.g., to manage communication progress, which is
supplied only when operations such as MPI_Test and MPI_Wait are invoked.

communication characteristics of MPI operations; (2) the CCO
analysis component, which identifies hot computation and
communication regions and performs profitability and safety
analysis to determine whether to optimize these regions; and
(3) the CCO tuning component, which applies the appropriate
program transformations and inserts MPI_Test operations with
a frequency determined by empirical tuning of the optimized
code. For each optimization to be profitable, any communi-
cation slowdown from the use of the nonblocking operations
must be fully overlapped with the local computation, and the
insertion of MPI_Test operations should cause only marginal
slowdown of the computation. Our framework currently uses
empirical tuning to select appropriate optimization configura-
tions and to skip nonprofitable optimizations.

The idea of overlapping computation and communication
in MPI applications has been well studied [8], [13], including
both using analytical performance models [21] and using
compiler analysis [9] to assist the optimization. Similar to
other existing work, we also manually applied the optimizing
transformations for each application. However, our work is
a step closer to complete automation than existing work in
that our work fully integrates analytical performance modeling
and compiler dependence analysis to automatically determine
(with optional developer guidance) the profitability and safety
of the overlapping optimization. Furthermore, while the spe-
cial interprocedural pattern of loop-based communication-
computation overlapping addressed by our work is common
in scientific applications, it has not been addressed previously
in the literature. While our example in Figure 1 contains only
a singe communication inside the loop body, the optimization
works similarly when the body contains a chain of dependent
communications, by overlapping them with independent com-
putations of the previous iterations.

Our main technical contributions are the following:

e Our framework tackles a common case of enhancing
the overlapping of computation-communication that has
not been previously addressed for MPI applications and
is able to fully automate the profitability and safety
analysis of the optimization, by using advanced analytical
performance modeling (which collectively considers all
the dynamic paths through each code block) and compiler
dependence analysis (which supports automated seman-
tic inlining of developer-supplied knowledge). Developer
guidance is required only to improve the accuracy of the
analysis for large scientific applications, because not all
source code of these applications is available and many
low-level implementation details are impossible to fully
automatically decipher [17]. We currently manually apply
the necessary program transformations, because code
need to be carefully moved across procedural boundaries.
We believe this process can be automated with some
developer guidance, which is our future work.

o We applied our approach to optimize 7 NAS Parallel
Benchmarks (NPB) applications on both a high-speed
and a slow network-connected cluster environment and
achieved 3-88% speedup on both platforms.



The remainder of the paper is organized as follows. Sec-
tion II presents our analytical performance modeling compo-
nent for automatically identifying communication and com-
putation hot spots in MPI applications. Section III discusses
how to automatically determine the safety of the optimization
through compiler analysis. Section IV summarizes strategies
we used to perform the actual optimizations and the tuning
of their configurations. Section V evaluates our framework
using 7 NAS application benchmarks [4]. Section VI discusses
related work, and Section VII presents our conclusions.

II. ANALYTICAL MODELING OF MPI APPLICATIONS

To effectively reduce the overhead of network commu-
nications in MPI applications, one must understand when
and where it becomes beneficial to enhance the overlap of
communications with local computations in these applications.
Through an analytical approach, our framework aims to model
the runtime execution flow of an input application in terms of
its relative amount of time spent in local computations and
network communications. This information then is used to
automatically identify potential communication bottlenecks as
candidates for optimization in the later steps.

To represent and estimate the time required to execute
the local computation of each path, we use the Bayesian
Execution Tree (BET) from the Skope analytical per-
formance modeling framework [16]. Each BET essentially
represents possible runtime code paths of an application to-
gether with their execution frequency and expected execution
time. We use the Skope framework to automatically generate
a BET representation of each application from the application
source code combined with some sample input data and code-
coverage profiling of the application execution. We then extend
the Skope framework to additionally estimate the overhead of
each MPI communication through the following steps.

1) Use a LogGP-based communication model for the MPI
runtime to estimate the communication time for each
individual MPI call.

2) Statistically estimate the expected average communica-
tion time for each code path by combining the individual
communication with the execution frequencies.

Finally, the balance between the time required for each
MPI communication and the expected execution time of its
surrounding local computation is used to project optimization
opportunities. The following first illustrates the BET repre-
sentation that we inherit from [16] and then explains our
extensions for modeling MPI communications.

A. Bayesian Execution Tree

Figure 3 shows an example BET for one of the MPI
processes of the NAS FT benchmark in Figure la. Each
node of the BET represents a code block (a sequence of
statements in the user program) together with its runtime
execution frequency, defined as the expected average number
of times that statements in the code block will be executed
at runtime. A depth-first-traversal (DFS) of each
subtree of the BET corresponds to a possible runtime execution
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Fig. 3: Simplified Bayesian Execution Tree for NAS 1D FFT
before overlapping computation and communications (only
important branches, loops, and function calls are shown)

path of the statements. For example, in Figure 3, Node#2 is a
loop of N iterations, so the frequency of its loop body is N.
Node#7 is a branch inside the ff# function. If the application is
to perform 1D FFT, this branch is taken 100% of time during
execution, so its frequency is N, while the frequency of the
alternative branches (Node#6 and Node#8) are set to 0.

In order to derive execution frequencies of each code block,
the Skope framework requires a description of the application
input data, manually provided by the user or in our case, au-
tomatically collected via instrumented runs of the application.
The input data description characterizes the possible values of
data that the application may obtain from external sources, for
example, command-line arguments, environment variables, or
files. For array variables, only their dimensions and the size of
each dimension are required. For MPI applications, the total
number of MPI processes (MPI_Comm_size) and the rank of
the process to model (MPI_Rank) are additionally required.
Based on the input data description, the Skope framework
applies constant propagation to derive possible values of the
expressions that control the directions of branch and loop
controls. A fall-through probability is assumed to be 50% if
the values cannot be accurately determined. For this paper, we
used gcov to profile applications with sample input data,

B. Modeling MPI Communications

To predict MPI communication overhead, we have extended
the Skope framework with the LogGP model [2] to addition-
ally model the latency (elapsed time) of each MPI operation
using the following four parameters:

1) P: number of processes involved in the communication
2) n: size (in bytes) of the message being transferred
3) alpha: overhead of starting each message and time inter-
val required between transmitting each pair of messages
4) beta: communication time per byte for large messages,
determined by the underlying network bandwidth.
Among the four parameters, alpha and beta can be cal-
culated ahead of time from characteristics of the underlying
network. We compute beta as the reciprocal of the network



bandwidth and alpha by using microbenchmarks to measure
the latency of MPI_Send and MPI_Recv operations on the
target platform. The other two parameters, P and n, are de-
termined through instrumented runs of the user application. In
particular, P equals to MPI_Comm_size; and n is obtained
from the values used to invoke the MPI operations.

Following the LogGP model, we model the cost (latency)
of each MPI point-to-point communication as:

costpap(n; alpha, beta) = alpha + n - beta. (1

To model the MPI_Alltoall operation, we use the fol-
lowing two formulas.

coStshort = logP - alpha + g -logP - beta 2)

costiong = (P — 1) - alpha + n - beta 3)

The first formula models the latency of short messages
and the second that of long messages. We use values of
control variables from the MPI runtime library, for example,
MPIR_CVAR_ALLTOALI_SHORT_MSG_SIZE for MPI all-
toall, to determine whether a message should be categorized
as short or long and thereby select the proper formulas to use.

After estimating the latency of each individual MPI opera-
tion, the overall communication time of a code path in BET
can be calculated by adding the communication time of all
code blocks along the path, using the following formula.

costy, = Z cost(i) x freq(i) 4)
Specifically, the total communication time of a path of
m nodes in the BET can be computed as the sum of the
latency of each individual MPI operation multiplied by its
execution frequency freq(i). Here, freq(i) is calculated as
the same of the frequency of the BET node that contains
the MPI operation, and cost(i) is calculated as indicated
above using LogGP formulas instantiated with the expected
parameter values of the MPI operations. For example, the
total communication time of MPI_Alltoall in Figure 3 can
be computed by multiplying the average communication time
of MPI_Alltoall by the number of iterations of the loop
node#2 (xN) and the fall-through probability of the 1D FFT
branch node#7 (x100%).

III. OPTIMIZATION ANALYSIS

The objective of our optimization analysis is to automat-
ically identify which MPI communications to optimize and
what local computations can be safely overlapped with the
communication, through the following three steps.

1) Analytically identify MPI operations that are potential
performance bottlenecks based on the modeling of com-
munication cost and the execution flow modeling of the
entire application described in Section II. In particular,
based on the BET representation of the user application,

this step identifies from the top /N most time-consuming
MPI calls those that collectively take > P% of the
overall communication time, where both N and P are
user-configurable parameters and were set by default
with N = 10 and P = 80. The selection is accomplished
by simply sorting the pre-estimated communication time
of all MPI calls in the BET and then selecting the top
ones. For example, for the NAS FT application shown
in Figure 3, a single MPI call, the MPI_Alltoall at
the bottom of the BET, is selected since it takes more
than 95% of the overall communication time.

2) For each identified MPI communication to optimize,
locate the closest enclosing loops of the MPI communi-
cation in the BET—for example, node#2 in Figure 3 for
the NAS FT application—to potentially overlap with the
communication. If the enclosing loop does not exist, the
communication is given up as an optimization target.

3) Suppose comm(I) is the MPI communication being
considered for optimization at each loop iteration. Apply
loop dependence analysis to identify the statements (Be-
fore(I)) that compute data to be transferred in comm(I)
(that is, those that have dependence into comm(I)), and
the statements (After(I)) that use the data transferred
from comm(i) (that is, those that have dependence from
comm(I)). Determine whether comm(I) is independent
of After(I-1) and Before(I+1); that is, whether it is safe
to overlap comm(I) across loop iterations. If yes, the
loop is selected for optimization.

A key challenge in optimizing large applications is that
MPI communications are often scattered across procedural
boundaries, and the computation that can be overlapped with
them is often some distance away and similarly across ab-
straction boundaries. By using the Skope framework and
through the BET representation of the whole user application,
we are able to inter-procedurally select MPI communications
as well as their surrounding loops as potential optimization
targets. Then, an optimization pragma, #pragma cco do,
illustrated at line 1 of Figure 5, is inserted automatically before
each selected code region to instruct the compiler to perform
additional analysis to determine the safety of optimization.

We use loop dependence analysis within the ROSE
C/C++/Fortran compiler [33] to automatically determine the
safety of the reordering optimization to each selected code
region. By making the compiler inline all function calls
within the region, the entire optimization analysis can be fully
automated, if the compiler can find the source code of all
the functions invoked inside the loop being optimized; when
the source code of some of these function are not available
for analysis, the compiler would opt to be conservative and
deem the optimization unsafe. If such conservativeness is not
desirable, the developer can insert the following pragmas to
provide additional guidance to the loop dependence analysis.

1) #pragma cco ignore, illustrated at line 3 in Fig-
ure 5, which can be inserted before each function call
that can be safely ignored when performing dependence



analysis. That is, these function calls will not implicate
the safety of any reordering optimization. Examples
of such function calls include the timer_start() and
timer_stop() in Figure 5.

2) #pragma cco override, illustrated at the first line
of Figure 4 and 6, which defines the memory side effects
of the following function call. The override definitions,
when manually specified, allow dependence analysis to
proceed across procedural boundaries without requiring
the source code or the inlining of the functions invoked.

For this paper, we manually inserted the above annotations
to overcome situations where the source code of the callee
is unavailable, or the low-level implementation details of
the callee are too complex to be accurately deciphered by
traditional compiler dependence analysis (e.g., the underly-
ing implementations of MPI operations). Figure 4 shows an
example override definition for MPI_Alltoall, where we
use the read and write pseudo statements to indicate read and
write memory accesses. Here based on the domain knowledge
of the application that the data being sent/received have atomic
types instead of user-defined types, the memory side effect of
the operation can be expressed as consecutive read and write
memory references to the communication buffers (sendbu f
and recvbuf). We similarly composed memory side effect
definitions for the other MPI operations.

Traditional loop dependence analysis in compilers is based
on the disambiguation of subscripted array references, by solv-
ing diophantine equations parameterized by the surrounding
loop index variables, to determine whether each pair of array
references may refer to the same memory location at two
arbitrary loop iterations [3]. The analysis therefore becomes
ineffective when memory references are not expressed using
array notations or when the subscript of an array reference
cannot be expressed as a linear combination of the surrounding
loop index variables. Additionally, since the compiler does
not have any information about the runtime control flow
of a program, it assumes all control paths can happen at
runtime, and no unknown system calls (e.g., timer_start and
timer_stop in Figure 5) can be reordered. Our annotation
mechanisms are provided to developers to optionally overcome
such conservativeness when desired. In our experience of
optimizing the NAS application benchmarks, we have used
these annotations to serve the following purposes.

o Define the memory side effects of MPI operations and
system calls that can be ignored (e.g., Figure 4 and
Figure 5), the source code of which is not available to
the compiler. These annotations can be reused across MPI
applications without additional work by the developers.

¢ Specialize the memory side effect of a function call when
only a single runtime code path is known to be executed
by the function call, to prevent the compiler considering
all possible code paths through the default inlining mech-
anism. For example, in NAS FT, the procedure fft has
6 branches for solving different dimensions of the FFT
problem (0D, 1D, or 2D), while only one branch will be

taken at each invocation. By manually overriding the de-
fault inlining, we can eliminate the unreachable branches
from being considered. Figure 6 shows the annotation we
used to override the f f¢() function in NAS FT. Here the
original function have several branches for different data
layout, while the override definition has only 1D layout
that is the target code path to optimize. These annotations
can be automated with developer approval by having the
compiler directly interpret the modeling output of Skope.

$cco override
subroutine MPI_Alltoall (sendbuf, sendcount, sendtype,
> recvbuf, recvcount, recvtype, comm, ierror)
do i = 1, sendcount
read sendbuf (i)
end do
do i = 1, recvcount
write recvbuf (1)
end do
end subroutine

Fig. 4: Example: describe the memory side effect of
MPI_Alltoall() for simple data types

1 !$cco do

2 do iter = 1, niter

3 !Scco ignore

4 if (timers_enabled) call timer_start (T_evolve)

5 call evolve (u0,ul,twiddle,dims(1,1),dims(2,1),dims (3,1)
6 !Scco ignore

7 if (timers_enabled) call timer_stop(T_evolve)

8 !Scco ignore

9 if (timers_enabled) call timer_start (T_fft)

10 call fft(-1,ul,u2)

11 !Scco ignore

12 if (timers_enabled) call timer_stop(T_fft)

13 !Scco ignore

14 if (timers_enabled) call timer_start (T_checksum)

15 call checksum(iter,u2,dims(1,1),dims(2,1),dims(3,1))
16 !Scco ignore

17 if (timers_enabled) call timer_stop (T_checksum)

18 end do

Fig. 5: Example: annotating a loop to optimize for NAS FT

$cco override

subroutine fft(dir, x1, x2)
cfftsl(-1,dims(1,3),dims(2,3),dims (3,3),x1,x1,scratch)
transpose_x_yz (3, 2, x1, x2)
cffts2(-1,dims(1,2),dims (2,2),dims (3,2),x2,x2,scratch)
cfftsl(-1,dims(1,1),dims(2,1),dims(3,1),x2,x2,scratch)

end subroutine

Fig. 6: Example: using 1D layout code path to override the
default inlining for NAS FT

IV. PROGRAM TRANSFORMATION

After being selected by our automatic compiler analysis
component, each loop to be optimized includes at least one
MPI communication, ¢, inside the loop body, and two sets
of statements, Before(c) and After(c), that are safe to be
overlapped with ¢ across loop iterations. If the Loop body
contains multiple MPI communications, say cl followed by
c2, both of which are selected for optimization, then c1 and
c2 must be independent across different loop iterations, as
cl € Before(c2) and ¢2 € After(cl) must hold, and to be



both selected for optimization, we must have ¢1(I) (the MPI
communication c1 at loop iteration I) and A fter(cl,I—1) (the
statements after cl at loop iteration I-1) being independent,
and similarly ¢2(I) and Before(c2,I+ 1) being independent.
Consequently, c1 and ¢2 must be independent of each other
across loop iterations. So they can be optimized one after an-
other without violating any dependence constraints, with each
optimization considering only a single MPI communication
and its surrounding loop, discussed in the following.

For each MPI communication and its surrounding loop to
optimize, we currently manually transform the source code
to enable the overlapping of computation and communication.
The main difficulty of fully automating the optimization is
to identify the actual statements corresponding to Comm(I),
Before(I), and After(I) respectively, as shown in Fig-
ure 7(a), when they are scattered across multiple procedures,
and some of these procedures cannot be inlined in the compiler
analysis phase, e.g., due to the need for code path specializa-
tion as demonstrated in Figure 6. Otherwise, our future work
will automate the following currently manually applied steps.

A. Converting MPI communications

Convert each blocking MPI operation, for example, alltoall
collectives and point-to-point send-receives, in Comm(I) to
an equivalent nonblocking communication combined with a
blocking wait, as illustrated in converting Figure 7a to 7b.

B. Reordering computation and communication

Tag each statement in the loop body as belonging to
Before(I), After(I), Icomm(I), or Wait(I), where I is
the index variable of the surrounding loop, as shown in
Figure 7(b). Then, interleave Icomm(I) with Before(I+ 1)
and After(I — 1), as illustrated in Figure 7d, in two steps:

1) Move Before(1) and Icomm(1) to the outside before
the first iteration of the loop starts, and move Wait(N)
and After(N) outside after the last loop iteration as
shown in Figure 7c.

2) Move Before(I) and Icomm(I) above Wait(l — 1)
and After(I — 1) as shown in Figure 7d.

Figure 8 shows the new scheduling of the various computation
and communication components after the reordering. Note that
for each iteration I, Before(I), Icomm(I), Wait(I) and
After(I) are evaluated in the same order as in the original
computation. The main difference is that After(I — 1) and
Before(I + 1) are now placed in between Icomm(I) and
Wait(I), so that the non-blocking communication Icomm/(I)
can now be processed in parallel with After(I — 1) and
Before(I+1), thereby facilitating overlapping of computation
and communication. If Before(I + 1) or After(I — 1)
contains other MPI communications that are independent of
comm(I), the same rescheduling modification can be ap-
plied to these communications in the same fashion, where
Icomm(I) and wait(I) would belong to the Before(I) or
After(I) components of these new communications.

DOI =1..N
Before (I)
Comm (I)
After (1)

END DO

(a) Input loop
DOI =1..N
Before (I)
Icomm(I)
Wait (I)
After (I)
END DO
(b) Decouple blocking comm
Before (1)
Icomm (1)
DO I =2 .. N
Wait (I - 1)
After(I - 1)
Before (I)
Icomm (I)
END DO
Wait (N)
After (N)
(c) Move first and last iterations
Before (1)
Icomm (1)
DO I =2 .. N
Before (I)
Wait (I - 1)
Icomm(I)
After(I - 1)
END DO
Wait (N)
After (N)

(d) Interleave consecutive iterations

Fig. 7: Steps to reorder communication and computation
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C. Replicating the communication buffer

Each MPI operation needs a dedicated buffer to hold the
data being communicated. Applications typically first allocate
the necessary communication buffers at the initialization stage
and then reuse the same buffers in the MPI operations across
different loop iterations. After applying our optimization, as
illustrated in Figure 8, the communication (Icomm(i) and
W ait(i)) at each ith iteration, where ¢ > 2, is overlapped with
computation Before(i+ 1) and After(i—1). Assuming that
two distinct buffers, InBuf and OutBuf, are used for sending
and receiving each message, respectively, each buffer needs to
be replicated into a pair of equal size to ensure that distinct
buffers are used across the overlapping iterations, as illustrated
in Figure 9. In particular, we replicate each buffer by allocating



Before (1, InBuf)
Icomm(1l, InBuf, OutBuf)
DOI =2 ..N

Before (I, InBuf)
Wait (I - 1)

Icomm (I, InBuf, OutBuf)
After(I - 1, OutBuf)
END DO
Wait (N, OutBuf)

After (N, OutBuf)

(a) Original code using one pair of input/output buffers
Before (1, InBuf)

Icomm (1, InBuf, OutBuf
DOI =2 .. N
Before(I, I % 2 == 1 ? InBuf : InBuf2)
Wait (I - 1)
Icomm (I, I % 2 == 0 ? InBuf : InBuf2
, I % 2 == 0 ? OutBuf : OutBuf2)
After(I - 1, , I $ 2 == 1 ? InBuf : InBuf2)
END DO
Wait (N, N % 2 == 1 ? OutBuf : OutBuf2)
After (N, N % 2 == 1 ? OutBuf : OutBuf2)

(b) After replicating the input/output buffers

Fig. 9: Replicate buffers for nonblocking communication

additional memory outside the loop and then alternately use a
distinct buffer in every pair of consecutive loop iterations.

D. Inserting MPI_Tests

When using nonblocking MPI operations, some CPU time
needs to be allocated, by embedding M PI_Test calls in
the local computation, to ensure continuous progress of the
communications. If the local computation is not inside a loop,
we insert one or more M PI_Test calls evenly distributed into
the computation. On the other hand, if the local computation
is inside a loop, we insert M PI_Test into the beginning
of the loop body and use a conditional variable to adjust its
frequency. The inserted code is illustrated in Figure 10. In both
cases, the frequency of M PI_Test is empirically adjusted as
the application is ported to each architecture.

DOI=1...1L1
If I $ Freq == 0
MPI_Test
Original_computation_statements
END DO

Fig. 10: Insert MPI_Test into a loop at specific frequency F'req

V. EXPERIMENTAL RESULTS

To evaluate the accuracy of our analytical modeling of
MPI applications and the performance implications of our
optimizations in automatically overlapping computation with
communication, we applied our approach to model and op-
timize 7 MPI applications from the NAS NPB [4] on two
clusters shown in Table I. The first Intel platform is a high-
performance computing cluster with very fast internode com-
munication through InfiniBand. The second platform is in
a small data center where the internode communication is
through relatively slow Ethernet. Both clusters use MPICH
3.1.1 [15] as the underlying MPI library. Because our current

TABLE I: Experiment platforms

Server Intel HP ProLiant BL460c Gen6
Intel Xeon Intel Xeon
Instruction set x86 x64
Frequency 2.6 GHz 3.2 GHz
Compiler ICC/Ifort 13.1 GCC/Gfortran 4.4.7
Network InfiniBand Qlogic QDR 1 Gbps Ethernet
Total nodes 301 24 on 3 racks
Max memory 64 GB 48 GB

analytical performance model cannot estimate intra-node MPI
communication time, we have allocated a single MPI process
per node on both clusters.

For each MPI application, we first used our extended
Skope modeling framework to find the most time-consuming
MPI communication in the application. Then, after using
the ROSE compiler to determine the safety of overlapping
each communication with its surrounding loop, we manually
applied the optimization to the enclosing loop. We measured
the performance improvements from the optimizations using
input data provided by the NPB benchmarks and using a
range of 2 to 9 nodes for each application. Besides using the
built-in timers within the NPB applications to collect their
overall performance, we manually instrumented the source
code of the applications to report the performance of individual
communications. We used the class B input of the NAS
benchmarks in most of our studies, as the bigger input sizes
(class C and class D) took too long to run using the relatively
small number of nodes available on our platforms.

A. Accuracy of Hot Communication Prediction

To evaluate the accuracy of our modeling of MPI communi-
cations, Table II shows the differences in hot communication
selections for the NPB applications, by comparing the set
of communication hot spots selected using our model with
those found by profiling the NPB applications, using class
B input on 4 nodes. When selecting the top time-consuming
MPI communications, we required that their overall time be at
least 80% of the application’s overall communication time. In
this case, our predictive modeling selected the same set of hot
communications as found using application profiling. When
asked to select a given number of the most time-consuming
communications, the output by our predictive modeling differs
by at most 2 selections compared with using profiling, for
the NAS LU benchmark. Here the most time-consuming
communications are pairs of sends/receives at four symmetric
directions, which were estimated to take the same time by our
predictive modeling. However, their actual runtime collected
through profiling differ by 37%, because the execution of the
processes is unbalanced, resulting in extra wait time to syn-
chronize the corresponding MPI_Send/MPI_Recv operations.

Figure 11 compares our projected communication time
with the actual measured time for NAS FT, using two and
four processors. Here in spite of the small error rates in
projecting the absolute values of the communication time, our
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Fig. 11: Profiled runtime and modeled cost of NAS FT with
middle-sized input (B) on x86 cluster

TABLE II: Differences between the projected hot-spot selec-
tion and the measured hot-spot selection based on profiling
with 80% threshold for class B data on 4 nodes. Zero means
the set of N hot spots equals the top /N hot spots.

Selected number of hot MPI communications
112]3|4]5]6 7138
FT 0
IS 00
CG | 0
LU [0 |1 |2 ]2]1]1 00
MG | 1 1101 1

modeling framework was able to accurately capture the relative
importances of the various communication operations.

B. Impact of Optimizations

Figures 12 and 13 show the speedups we attained by
enabling better computation-communication overlapping for
the NPB applications. For each benchmark, the performance
of the original and the optimized code is measured by using
input class B on 2, 4, 8, and 9 nodes, with one MPI process
bound to each node, with the exception of NAS BT and SP,
which require the number of processes to be N2, where N
is the number of nodes, and so are evaluated using 4 and 9
processes only. The overall elapsed time of each application
is measured by using NPB’s built-in timer.

Our optimization attained 3—-88% speedup for the NPB ap-
plications, with an average speedup of 18.8% on the InfiniBand
cluster and 16.6% on the Ethernet. Significant speedups are
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Fig. 13: Optimization speedups on the Ethernet cluster.

attained for FT and IS, which use alltoall collectives as the
main communication operation, and less significant speedups
for the other benchmarks, which mostly use point-to-point
send/receives. The highest 88% improvement is observed with
FT, which uses a time-consuming M PI_Alltoall operation,
enclosed inside the outermost loop of the application, to
exchange a large amount of data. The lowest speedup (3%)
is observed with MG, which does not have sufficient local
computation in the surrounding loop of the MPI communica-
tion to overlap with communication.

While our optimization was able to attain a consistent
level of performance improvement on both platforms, the best
speedups are observed when using different runtime config-
urations on these platforms. For example, the best speedup
for NAS FT was attained when using 8 processors on the
infiniband cluster but when using two processors on the
Ethernet cluster, as the communication latency on the Ethernet
is much longer than that of the Infiniband network, which in
turn affects the amount of local computation time required to
overlap with the communication. Overall, the possible speedup
attained is bounded by the latency of the communication being
optimized and the amount of available local computation to
overlap with the communication time. A larger amount of
local independent computation is generally required to fully
compensate the latencies of a slower network (e.g., Ethernet)
than that of a faster network (e.g., infiniband).



VI. RELATED WORK

Our work focuses on application-level performance en-
hancement by enabling automated overlapping of MPI com-
munications with independent local computations. It therefore
serves a different purpose than existing work on enhancing
the communication efficiency of the many MPI operations,
for example, alternative protocols for point-to-point com-
munications [5], [10], collective operations [14], [26], [37],
[38], remote direct memory access (RDMA) [18], [24], [41],
load balancing [23], [28], and the elimination of redundant
communications through software caching and the exploitation
of data locality [7], [29], [39].

The Bamboo source-to-source translator [36] also aims to
automatically translate MPI applications to latency-tolerant
forms but relies on developer annotations to identify MPI
regions to optimize. In contrast, our work automatically de-
termines the profitability of the optimizations from analytical
performance modeling. Iancu et al. [21] automatically selected
message sizes and schedules for MPI communications through
an analytical model of system scale and load. Danalis et al. [9]
investigated compiler optimizations to potentially automate the
overlapping of computations and MPI communications, by for-
mulating the side effects of key MPI operations so that an MPI-
aware compiler can automatically assess the safety of several
optimizations, which were then manually applied in their
paper. Various patterns of computation-communication over-
lapping and automated optimization schemes have also been
discussed [8], [13]. Our work particularly focuses on automat-
ically enabling a special form of loop-based communication-
computation overlapping in scientific applications, a form that
has not been addressed by existing work.

Sancho et al. [34] combined empirical tuning with network-
ing models to quantify the potential benefit of overlapping
communication and computation. Potluri et al. [31] empir-
ically quantified the overlapping of MPI-2 operations in a
seismic modeling application. Hu et al. [20], [35] identified
the consumer-producer model from the control flow graph of
the application to guide optimization decisions for overlapping
Alltoall communication in a 3-D FFT. Didelot et al. [11], [12]
developed a message progression model based on collaborative
polling that allows an efficient auto-adaptive overlapping of
communication phases with computation. In this paper, we
predicted the most time-consuming code paths that contain
MPI communications to optimize, using existing analytical
models of communications [2].

Preissl et al. [32] summarized common communication
patterns in MPI applications to enable automated optimization.
Pellegrini et al. [30] proposed an exact dependence analysis
approach for increasing the overlapping of computation and
communication. Subotic et al. [40] speculatively extracted
runtime data-flow to understand the dynamic dependence of
the application. Aananthakrishnan et al. [1] used a hybrid
static and runtime data-flow analysis of MPI programs. We
also use dependence analysis to determine the correctness
of optimization, enhanced with additional knowledge from

developers about their applications.

In order to find the optimal placement of nonblocking
MPI operations within the computation control flow, accurate
modeling of the underlying computation and communication
is required [6]. Hoefler et al. [19] presented an analytical
approach to model MPI barriers. Ino et al. [22] presented
a parallel computational model for synchronization analysis
in MPIL. Martinez et al. [25] developed an analytical model
extending LogGP [2] for accurate estimation of individual
MPI communication. Moritz and Frank [27] modeled network
contention in MPI applications. In our optimization, we first
reposition each pair of local computation and nonblocking
communication as far apart as safety allows across different
loop iterations and then insert MPI_Test with empirically
tuned frequencies into the local computation to ensure proper
progress of the nonblocking communication.

VII. CONCLUSION

This paper presents a systematic approach to automate
the overlapping of communications with independent com-
putations in large MPI applications, thereby enhancing their
performance portability. Our optimization workflow starts with
analytical performance modeling of the overall application
execution flow to identify long-lasting MPI communications to
overlap. Next, we conduct automated safety and profitability
analysis (with optional developer assistance) to find optimiza-
tion opportunities. We complete the optimization by manually
applying the necessary transformations in a systematic fashion
that can be potentially automated. We applied our approach to
optimize 7 NAS NPB applications on both a high-speed and
a slow network-connected cluster environment. We achieved
3-88% speedup on both platforms.
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